Rejestracja

Please leave these two fields as-is:
UWAGA: Prosimy o rozwiązanie prostego równania matematycznego!
zamknij

Zaloguj się

Zapomniałeś hasła?

Jeżeli nie pamiętasz swojego hasła, wyślemy Ci nowe - wystarczy skorzystać ze specjalnego formularza
Przypomnij mi hasło

Zarejestruj się
Napisano: 05 grudnia 2016

Liczba komentarzy: 0
Spektrofotometryczna analiza jakościowa i ilościowa DNA i RNA za pomocą urządzenia NanoDrop — protokół

Wiele laboratoriów ma problem z izolacją RNA. Ten wstępny etap może zaważyć na powodzeniu lub klęsce całej serii badań, ponieważ RNA zanieczyszczone odczynnikami używanymi podczas ekstrakcji będzie nieefektywnie odwrotnie-transkrybowane. Dlatego niezwykle ważna jest kontrola wyizolowanego RNA przed jakąkolwiek obróbką enzymatyczną. Idealnym narzędziem do takiej kontroli jakości jest NanoDrop.

 

Cel: określenie czystości DNA lub RNA po izolacji.

Wprowadzenie: po skończonej izolacji kwasów nukleinowych musimy wiedzieć jakie jest stężenie i czystość materiału przed wykonaniem jakichkolwiek badań.

Podczas ekstrakcji kwasów nukleinowych używa się rozpuszczalników organicznych (fenol, chloroform, alkohole) oraz soli (np. chlorek lub izotiocyjanian guanidyny), które mogą inhibować reakcje enzymatyczne takie jak PCR, RT-PCR, znakowanie rybonukleotydów i inne. RNA zanieczyszczone solami także szybciej degraduje (nawet przechowywany w -80 °C!). Dlatego tak ważna jest poprawna analiza jakościowa i ilościowa każdej próbki. Wygodną formą takiej analizy jest pomiar absorbancji przy długości fali 230, 260 i 280nm. Obecnie większość laboratoriów dysponuje systemami typu NanoDrop (Thermo Scientific), które mierzą te parametry w kropli <1,5ul i automatycznie przeliczają absorbancję na stężenie i czystość białkową oraz organiczną. Wyznaczają także wykres absorbancji, bardzo pomocny przy ustalaniu źródła zanieczyszczeń kwasów nukleinowych.

Wykonanie pomiaru:

*    Próbkę DNA/ RNA przed pomiarem rozmrozić i trzymać na lodzie. Bezpośrednio przed pomiarem zvortexować lub przepipetować góra-dół aby ją dobrze wymieszać.

*         W menu urządzenia wybrać odpowiednia opcję (w przypadku NanoDrop’a 1000 jest to “Nucleic Acids”->ds DNA/ ssDNA/ RNA. Opcje różnią się wartością  jednostkowej absorbancji przyjmowaną w przeliczeniu na stężenie, należy o tym pamiętać!)

*          Przygotować czystą wodę (do inicjalizacji) oraz bufor, w którym rozpuszczany był kwas nukleinowy (próba “ślepa” używana jako kalibrator). Inicjalizację i kalibrację wykonać nakrapiając każdorazowo 1,2-1,5µl płynu.Za każdym razem zetrzeć szmatką okienko spektrofotometru.

*          Nałożyć 1,2-1,5µl próbki na okienko, uważając na ewentualne bąbelki powietrza, które mogą zafałszować pomiar. Po wykonaniu pomiaru okienko przemyć wodą i przetrzeć szmatką.

*      Jeżeli musimy zbierać próbkę z powrotem z okienka, dbajmy o jakość wody i dokładnie przemywajmy okienko pomiędzy pomiarami kolejnych próbek!

Ryc. 1: Czyste RNA w zakresie stężeń od 1000 ng/µl (granatowa krzywa) do 3800 ng/µl (ceglasta). Widzimy, że stężenia powyżej 3000 ng/µl (żółta i ceglasta krzywa) są zbyt wysokie, by można było poprawnie oszacować A260. Charakterystyczne jest to, że w przypadku każdej z krzywych absorbancja A230 jest około 2x mniejsza niż A260 jest to wyznacznik dobrej jakości RNA

Analiza i interpretacja wyniku:

*        Analiza ilościowa: Ilość kwasu nukleinowego jest określana jako stężenie w 1 µl. Zakres stężeń, w którym oznaczenie jest wiarygodne to ok. 10-3000 ng/µl . Powyżej tej wartości DNA lub RNA jest zbyt stężone, by prawidłowo określić jego ilość i wyznaczyć krzywą absorbancji (ryc. 1). Poniżej wartości 10ul znacząca absorbancja tła powoduje przeszacowanie wyniku. Próbkę o zbyt wysokiej wartości absorbancji rozcieńczamy tym samym buforem, którego używaliśmy podczas izolacji i którym kalibrowaliśmy urządzenie. Przy zbyt niskiej ilości kwasu nukleinowego próbkę zagęszczamy lub przyjmujemy że ma ona stężenie niższe niż wyliczone przez urządzenie.

*          Analiza jakościowa: maksimum absorbancji białek, częstego zanieczyszczenia DNA przy izolacji manualnej, wynosi 280 nm, zaś zanieczyszczenia organiczne posiadają najwyższą absorbancję poniżej 240 nm. Przyjęto więc arbitralnie 230nm jako długość fali dobrze określającą stopień zanieczyszczeń rozpuszczalnikami.organicznymi.

*          Miarą stopnia czystości kwasów nukleinowych  jest stosunek A260/230 oraz A260/280. Przyjmuje się, że czyste DNA lub RNA ma A260/280>1,8 i A260/230>1,8. Idealnie czyste RNA rozpuszczone w wodzie DEPC może mieć A260/230 nawet ok. 2,20.Na dokładną wartość tego parametru nieznacznie wpływa użyty bufor, ale generalnie parametry dobrze wyizolowanego DNA lub RNA oscylują wokół 1,8 – 2,05.Najprościej rzecz ujmując oznacza to, że absorbancja przy maksimum dla kwasów nukleinowych (A260) jest 2x większa niż absorbancja tła i zanieczyszczeń.

*          Krytyczne dla reakcji enzymatycznych są wartości A260/280 i A260/230<1,4. Niższe wartości mogą spowodować bardzo kiepskie wyniki amplifikacji  np. metodą Real-Time PCR czy też słabe znakowanie sond do mikromacierzy.  Przy A260/230<1 nawet zwykły RT-PCR może okazać się problemem. Dlatego w przypadku kiepskiej czystości należy powtórzyć ekstrakcję alkoholem.

Rodzaje zanieczyszczeń

*        Zanieczyszczenie fenolem powodują wzrost absorbancji w zakresie 200-230 nm i rozszerzenie krzywej w zakresie 250-280 nm. Obraz (w przypadku ryciny 3 dotyczy próbek znaczonych strzałką, oprócz jasnoniebieskiej) jest podobny jak w przypadku zanieczyszczenia solami chaotropowymi. Takie DNA/RNA nie nadaje się do zastosowań enzymatycznych. A260/230  i A260/280 mogą przyjmować zaskakujące wartości (>2. lub <1,4 w zależności od stężenia fenolu i towarzyszących zanieczyszczeń, np. chloroformu i alkoholu izoamylowego)

Ryc. 2: Zanieczyszczenie fenolem (czerwona strzałka) oraz niepoprawna aplikacja próbki na okienko (oznaczone czarnymi strzałkami)

*          Zanieczyszczenie izotiocyjanianem lub chlorkiem guanidyny – widoczne na ryc. 2 (krzywa czarna i jasnozielona). Wydatny pik przy długości fali 230nm i towarzyszące mu przesunięcie absorbancji DNA/RNA w prawo w kierunku 270nm to cechy charakterystyczne tej kontaminacji. Taka próbka w żadnym wypadku nie nadaje się do zastosowań enzymatycznych, sole izotiocyjanianu są silnymi zwiazkami chaotropowymi i unieczynniają eznymy! Najczęściej oba parametry A260/A280 i A260/A230 <1,4.

Ryc. 3: Zanieczyszczenie solami chaotropowymi. Charakterystyczna „skocznia mamucia” na wykresie absorbancji.

*          Zanieczyszczenie białkami – powodują  wzrost absorbancji w zakresie 200-230 nm  i rozszerzenie krzywej w zakresie 250-280 nm. Przy niewielkim zanieczyszczeniu (<0,1% ) możemy nie obserwować „górki” z prawej strony wykresu, a jedynie niewielki spadek A260/280.

Ryc 4. Wysokie zanieczyszczenie białkowe DNA we wszystkich próbkach.

*          Zanieczyszczenie etanolem i/lub izopropanolem – nie obserwuje się znaczącej zmiany absorbancji, szczególnie w roztworach zbuforowanych. W wodzie parametr A260/230 może być nieznacznie obniżony. Przy niewielkiej domieszce etanolu reakcje enzymatyczne nie są mocno zakłocóne, warto jednak przywiązywać wagę do dokłądnego wysuszenia pelletu przd rozpuszczeniem, ponieważ zanieczyszczenia etanolem i izopropanolem są niewykrywalne spektrofotometrycznie!

*          Zanieczyszczenie DNA przez RNA (i vice versa)– oba kwasy nukleinowe są koekstragowane i zazwyczaj występują razem po izolacji. Mają także bardzo zbliżoną pochłanialność i emisję światła, więc są nirozróżnialne spektrofotometrycznie. W przypadku konieczności pozbycia się DNA z RNA musimy wykonać trawienie próbek  DNAzą.

 

Troubleshooting

*          A260/230 jest >2,3

Powodem może być kalibracja urządzenia innym buform niż użyty do rozpuszczenia próbek (np.woda vs TRIS-HCl). Inna możliwość to nieprawidłowe nakropienie próbki na okienko i pomiar powietrza zamiast kropli przez spektrofotometr. Objawia się to poszarpaną krzywą (ryc. 2)

*          Absorbancja A260 jest ujemna.

Powodem może być kalibracja urządzenia innym buform niż użyty do rozpuszczenia próbek (np.woda vs TRIS-HCl). Inna możliwość to nieprawidłowe nakropienie próbki na okienko i pomiar powietrza zamiast kropli przez spektrofotometr. (ryc. 2)

*          Urządzenie nie potrafi wyznaczyć absorbancji

Próbka zawieszona jest w pieniącym się bądź lepkim buforze, nakropiono zbyt mało próbki bądź poza strefą pomiaru (okienko jest puste).

image_pdfimage_print
Podziel się ze znajomymi
Skocz do formularza

Komentarze 0

Nikt jeszcze nie skomentował tego wpisu, napisz coś!
  1. Dodaj komentarz
    (wymagany)
    (wymagany)
    (wymagany)

    Pola oznaczone znaczkiem W są obowiązkowe. Musisz wypełnić wszystkie pola wymagane, aby dodać komentarz.
    Twój adres email, który podasz nie zostanie opublikowany z Twoim komentarzem.

    W treści komentarza dozwolone są tagi XHTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

do góry